На пути к A11: Apple A10X стала первой 10-нм SoC, произведённой TSMC

Выпущенный без громких анонсов процессор Apple A10X стал первой в индустрии коммерческой микросхемой, изготовленной по технологии 10 нм (CLN10FF) компанией Taiwan Semiconductor Manufacturing Co. Данная система на кристалле (system-on-chip, SoC) стала самым маленьким процессором X-серии для планшетов iPad за всю историю их создания (и одним из самых маленьких SoC Apple вообще), что может говорить о том, что данный SoC создавался в том числе с целью опробовать технологию CLN10FF перед массовым внедрением. Это не помешало компании наделить A10X существенной вычислительной мощностью и применить некоторые новые технические решения. Компания TechInsights произвела предварительный анализ A10X и поделилась некоторыми открытиями с общественностью.

Система на кристалле Apple A10X. Фото iFixit

Передовые техпроцессы

Использование передовых норм производства даёт возможность разработчикам микросхем увеличить количество транзисторов при неизменной себестоимости, тактовую частоту при неизменной сложности и энергопотреблении, или же уменьшить последнее при аналогичной сложности и тактовой частоте. В действительности разработчики комбинируют преимущества различных техпроцессов в зависимости от поставленной задачи, а также от реальных возможностей оборудования, производственных линий и др.

Следует помнить, что каждый новый технологический процесс имеет особенности — преимущества и недостатки — которые проявляются исключительно при начале массового производства микросхем. Таким образом, для их выявления компании начинают изготовление небольших чипов (с потенциально высоким уровнем годных). Подобные микросхемы зачастую называют pipecleaners — щётками для прочистки труб — и хотя они продаются и часто становятся коммерчески успешными, они также выполняют ещё одну важную задачу.

Став крупнейшим в мире производителем бытовой электроники, в последние годы Apple стала одним из лидеров в области создания SoC для мобильных устройств. Кроме того, учитывая объёмы производства микросхем, необходимых Apple, компания стала главным клиентом для TSMC и одним из основных для Samsung Foundry и некоторых других производителей чипов. Неудивительно, что Apple получила возможность не только оказывать влияние на характеристики технологических процессов, но и приоритетный доступ к передовым PDK (process development kit) и производству. Так, Apple стала первой компанией, задействовавшей техпроцессы CLN20SOC, CLN16FF+, CLN16FFC и CLN10FF. При этом процессоры для iPhone всегда первыми использовали передовой техпроцесс, и лишь затем Apple применяла его для производства более крупных SoC для iPad и iPad Pro (это не значит, что SoC для iPhone служили pipecleaner для процессоров для планшетов).

Apple iPad Pro

Для того чтобы представить iPad Pro на базе A10X в начале июня, Apple следовало получить готовые микросхемы примерно в апреле. Судя по маркировке на одной из микросхем A10X, она была упакована на десятой неделе 2017 года, что соответствует второй неделе марта. Учитывая время производственного цикла продвинутых FinFET-техпроцессов, а также время на упаковку и тестирование, можно предполагать, что изготовление A10X началось в ноябре 2016 года. Таким образом, можно констатировать, что Apple получила доступ к CLN10FF на три–шесть месяцев раньше всех конкурентов.

Говоря о конкурентах, не следует думать, что TSMC имеет много клиентов на технологический процесс CLN10FF. Данная технология будет использована исключительно разработчиками мобильных SoC в ближайший год, после чего последние перейдут на техпроцесс CLN7FF. По заявлениям самой TSMC, по сравнению с CLN16FF+, CLN10FF даёт возможность уменьшить площадь микросхем на более чем 50 %, увеличить частоту на 20 % (при неизменной сложности и энергопотреблении) или же уменьшить потребление на 40 % (при аналогичной сложности и частоте). Как видно, TSMC не ожидает от 10-нм чипов большого частотного потенциала или же очень существенного уменьшения потребления. Главная ставка делается на увеличение плотности транзисторов, что даст возможность увеличить количество исполнительных блоков в SoC. Последнее, впрочем, ограничивается предполагаемым энергопотреблением микросхем.

Apple A10X: 96,4 мм2

Согласно данным TechInsights, площадь ядра Apple A10X составила 96,4 мм2, что делает данный SoC не только самым маленьким процессором для iPad (если, конечно, не брать в расчёт A4 из iPad первого поколения и A9, который является процессором для iPhone 6S), но и одной из самых малых систем на кристалле Apple вообще.

Если сравнивать A10X с другими микросхемами Apple, то новинка на 24 % меньше, чем A10 (CLN16FFС, 125 мм2), на 34 % меньше A9X (CLN16FF+, 147 мм2) и даже на 9 % меньше Apple A6X (32 нм, 123 мм2), самого маленького X-чипа разработки компании до последнего времени. Малая площадь ядра A10X позволяют Apple максимизировать выход годных при использовании новейшего техпроцесса. Она же означает довольно консервативный подход Apple к созданию микросхемы. К сожалению, сложно сказать, является ли такой подход следствием того, что A10X — пробный шар Apple в области 10-нм техпроцесса, или консерватизм будет характерен для SoC Apple, производимых по техпроцессу CLN10FF и следствием особенностей данной технологии.

По оценкам TechInsights, Apple удалость добиться 45-процентного увеличения плотности размещения транзисторов от использования CLN10FF по сравнению с технологией CLN16FF+. Это примерно согласуется с ожиданиями самой TSMC и подтверждает тот факт, что компания не использует для CLN10FF межблочные соединения от 20-нм техпроцесса, которые были использованы для CLN20SOC, CLN16FF и CLN16FF+.

Сравнение Apple A10X и Apple A9X. Качество публично доступного снимка столь низко что едва ли позволяет различить разные блоки. Единственно, что можно сказать, так это то, что в A10X имеется огромный GPU (слева), а также относительно скромный массив CPU-ядер (справа).

Сравнение Apple A10X и Apple A9X. Качество публично доступного снимка столь низко, что едва ли позволяет различить разные блоки. Единственно, что можно сказать, так это то, что в A10X имеется огромный GPU (слева), а также относительно скромный массив CPU-ядер (справа). Кроме того, слева и сверху располагаются 64-разрядные интерфейсы работы с памятью.

Компания Apple планирует использовать CLN10FF для производства процессора для следующего iPhone (назовём его условно A11). Получение изготовленного на коммерческих линиях процессора A10X в начале марта дало Apple и TSMC несколько месяцев на отладку технологического процесса и проекта A11 для максимизации производительности и выхода годных данной SoC. Поскольку iPhone является ключевым продуктом для Apple, его SoC всегда использует наиболее продвинутую технологию производства для максимизации производительности и функциональных возможностей при минимальном энергопотреблении. В этот раз передовые нормы производства была использованы для iPad Pro (который вряд ли можно назвать самым популярным продуктом Apple), что может говорить о том, что A10X является pipecleaner. Тем интереснее взглянуть под крышку новинки!

Apple A10X: три пары ядер Fusion, 12-кластерный GPU, 8 Мбайт кеша

Как и следует из названия, Apple A10X является улучшенной версией A10 — c тремя парами ядер Fusion (высокопроизводительным Hurricane и экономичным Zephyr), графическим процессором с 12 кластерами (судя по всему, речь идёт о сильно доработанной архитектуре Imagination Technologies PowerVR Series7), 128-разрядным контроллером памяти и большим (по меркам мобильных устройств) кешем второго уровня (L2) объёмом 8 Мбайт.

Если сравнивать Apple A10X с A9X, то мы видим заметные улучшения в области вычислений общего назначения: новая микроархитектура (+40 % скорости), дополнительная пара ядер и увеличенный на 166 % L2 должны дать очень существенный прирост производительности. Большой вопрос, зачем мобильному SoC понадобился 8-Мбайт кеш L2, но, судя по всему, таковы были запросы разработчиков программного обеспечения для Apple iPad Pro. При этом тактовые частоты CPU не были увеличены ни по сравнению с A9X, ни по сравнению с A10, что, вероятно, является особенностью CLN10FF.

Сравнение графических подсистем A10 и A10X

Что касается графического процессора, то Apple решила не вносить количественных изменений в конфигурацию GPU по сравнению с непосредственным предшественником: A10X по-прежнему использует 12-кластерный дизайн. Подобный консервативный подход говорит о том, что в Apple решили не увеличивать площадь ядра, устанавливая дополнительные графические кластеры. Согласно документации Apple для разработчиков, данная графическая подсистема принадлежит к семейству iOS GPU Family 3, которое включает в себя GPU процессоров A9, A9X и A10. Таким образом, графический процессор A10X базируется на доработанной Apple архитектуре PowerVR GT7600, которая также используется в A10. В этой связи от него логично ожидать некоторого прироста производительности по сравнению с A9X как вследствие архитектурных улучшений, так и роста тактовой частоты (наблюдавшейся при переходе от A9 к A10).

Если же сравнить A10X c A9, который используется для планшета Apple iPad 2017 года, то можно констатировать, что новинка может предложить три вычислительных ядра общего назначения вместо двух, которые работают на 28 % более высокой тактовой частоте. При этом ядра Hurricane на 40 % быстрее вычислительных ядер Twister в типичных задачах (по данным Apple). Если же учитывать гигантский кеш второго уровня, то от A10X можно ожидать ещё более впечатляющего прироста производительности, особенно в приложениях, требующих высокой пропускной способности и низкой латентности памяти. Кроме того, благодаря наличию в паре Fusion энергоэффективных ядер Zephyr A10X может оказаться ещё и экономичней предшественника в режиме простоя и низких нагрузок. Что касается скорости графической подсистемы, то у A10X она как минимум вдвое более быстрая по сравнению с GPU у A9.

Apple iPad Pro и Apple iPhone

К сожалению, Apple редко говорит об энергоэффективности своих SoC по сравнению с предшественниками. Учитывая тонкий техпроцесс, малые размеры микросхемы (по меркам Apple), минимальный рост тактовой частоты CPU и наличие ядер Zephyr, можно с некоторой долей уверенности говорить о том, что A10X потребляет меньше любого процессора Apple X-серии (уж точно меньше A9X). Являлось ли это целью Apple при проектировании чипа, или стало следствием консервативного подхода к площади ядра по причине необходимости опробовать новый техпроцесс — неизвестно. В любом случае, ориентированный на профессиональных и бизнес пользователей Apple iPad Pro на базе мощнейшего SoC, чей размер не превышает типичных размеров микросхем для смартфонов компании уже видится серьёзным достижением.

Краткие выводы, или чего ждать от Apple A11?

Использование технологии CLN10FF позволило Apple уменьшить площадь микросхемы A10X как по сравнению с A9X, так и по сравнению с A10. При этом компания подняла производительность SoC, увеличив количество вычислительных ядер общего назначения (как по сравнению с A10, так и по сравнению с А9X), а также ускорив графическую подсистему за счёт дополнительных кластеров (по сравнению с A10) или более высокой тактовой частоты (по сравнению с A9X). Судя по всему, Apple не смогла или намеренно не увеличивала тактовые частоты CPU-ядер.

Подложка с микросхемами. Фото TSMC

Принимая во внимание особенности CLN10FF на примере Apple A10X, можно предположить, что Apple A11 не получит существенно более высокой тактовой частоты по сравнению с Apple A10 (впрочем, инженеры Apple совершали чудеса в прошлом, потому нельзя исключать ничего). Что он может получить, так это дополнительную производительность за счёт более «широких» ядер общего назначения нового поколения, а также за счёт увеличения количества исполнительных устройств. Поскольку разрешение экрана следующего Apple iPhone неизвестно (равно как и частота обновления), сложно делать догадки касательно количества кластеров/потоковых процессоров графической подсистемы A11. Что очевидно, так это то, что даже при применении GPU от iPad микросхема Apple останется в рамках 100 мм2, что соответствует SoC для iPhone. Впрочем, пока не ясно, что вообще за графическая подсистема будет использована в A11, поскольку существует вероятность, что Apple может задействовать GPU собственной разработки.

Впрочем, основной загадкой, как и всегда, является то, что будет встроено в A11 помимо новых CPU и GPU и будет ли вообще. Ответ на эту загадку даст лишь время.

Нравится4
Комментарии (2)
B
i
u
Спойлер